differential
L(obj, dim=None, dual=False, version='LdR')
An alias for the laplacian() operator.
See also
- The
laplacian()function documentation.
Source code in src/dxtr/operators/differential.py
210 211 212 213 214 215 216 217 218 | |
codifferential(cochain)
Codifferential operator acting on Cochain.
Returns:
| Type | Description |
|---|---|
The (k-1)-cochain derived from the former.
|
|
Notes
- It can only be applied on
Cochaindefined on aSimplicialManifold. - The codifferential is mathematically defined as:
- For 1-cochain, it corresponds to the divergence of the corresponding vector field.
Source code in src/dxtr/operators/differential.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | |
d(cochain)
An alias for the exterior_derivative() operator.
See also
- The
exterior_derivative()function documentation.
Source code in src/dxtr/operators/differential.py
192 193 194 195 196 197 198 199 | |
delta(cochain)
An alias for the codifferential() operator.
See also
- The
codifferential()function documentation.
Source code in src/dxtr/operators/differential.py
201 202 203 204 205 206 207 208 | |
exterior_derivative(cochain)
Exterior derivative acting on Cochain.
Paramters
cochain The k-cochain we want to compute the exterior derivative of.
Returns:
| Type | Description |
|---|---|
The (k+1)-cochain derived from the former.
|
|
Notes
- The exterior derivative can be applied to k-cochains with k > complex.dim, but in these cases, it will return a zero array of size N = number of top-simplices in the primal case or number of 0-simplices in the dual case.
- In the case of primal vector-valued 1-cochain, we apply a 'correction' to account for the fact that the vectors are not tangent to the primal complex. This correction is necessary for the computation of the mean curvature.
- The correction mentioned above might not be always necessary, keep that in mind.
Source code in src/dxtr/operators/differential.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | |
laplacian(obj, dim=None, dual=False, version='LdR')
Laplacian acting on Cochain or SimplicialManifold.
Paramters
obj
Either the Cochain we want to apply the Laplacian on; or the
SimplicialManifold we want to compute the Laplacian of, see Notes.
dim
Optional (Default is None). Should only be specified when the 1st
argument is a SimplicialManifold. Corresponds in this case to the
topological dimension at which the Laplacian should be computed.
dual
Optional (default is False). Should only be specified when the 1st
argument is a SimplicialManifold. If true, the generated cochain
base is a dual Cochain
version
Optional (default is 'LdR'). Triggers the formula to use.
- 'LdR': Laplace-deRham is used.
- 'LB': Laplace-Beltrami is used.
Returns:
| Type | Description |
|---|---|
A k-`Cochain` representing the laplacian of the input.
|
|
Notes
- The Laplace-Beltrami operator is defined as:
- The Laplace-deRham operator is defined as:
- For 0-cochain the two should match.
- Accepting
SimplicialManifoldsas inputs is usefull to perform
spectral analysis. - It is not clear to me if we should allow this operator to be applied on
a
SimplicialManifold... It makes life easier but I feel
Source code in src/dxtr/operators/differential.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | |