module
Module
Bases: UserList
A container for all simplices of the same degree.
Notes
- This k-Module object differs a bit from the exact mathematical definition: In theory, the k-Module of a simplicial complex is composed by all the k'-simplices with k' <= k. Here, our k-Module only contains k-simplices.
Source code in src/dxtr/complexes/module.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | |
adjacency
property
Adjacency matrix, computed through the faces.
boundary
property
Incidence matrix between these k-simplices and their (k-1)-faces.
circumcenters
property
Circumcenter position vectors for all k-simplex.
Note
- The returned array is of shape N*D where:
- N is the number of k-simplices.
- D is the dimension of the embedding euclidean space.
- These circumcenters are computed by the
build_dual_geometrymethod within theSimplicialManifoldClass.
coadjacency
property
Coadjacency matrix, i,e. adjacency computed through the cofaces.
coboundary
property
Transpose of the incidence matrix between the (k+1)-cofaces and these k-simplices.
covolumes
property
Covolumes of all k-simplices.
Note
- These covolumes are computed by the
build_dual_geometrymethod within theSimplicialComplexclass.
deficit_angles
property
Gaussian curvature for all k-simplices.
Notes
- For now, gaussian curvature can only be computed for 0- & 1-simplices.
dihedral_angles
property
Gaussian curvature for all k-simplices.
Notes
- For now, gaussian curvature can only be computed for 0- & 1-simplices.
dim
property
Topological dimension (k) of the considered k-Module.
size
property
Number of simplices within the k-Module.
vertex_indices
property
Indices of all the k-simplices within the Module.
vertices
property
Position vectors of all the vertices around each k-simplex.
Note
- The returned array is of shape N(k+1)D where:
- N is the number of k-simplices.
- k+1 is the number of vertices defining a k-simplex
- D is the dimension of the embedding euclidean space.
- These positions are computed by the
build_geometrymethod within theSimplicialComplexClass. - Returns None, in the case of an
AbstractSimplicialComplex.
volumes
property
Volumes of all k-simplices.
Note
- These volumes are computed by the
build_geometrymethod within theSimplicialComplexclass.
well_centeredness
property
Well-centeredness for all k-simplices.
Notes
- The 'well-centeredness' of a k-simplex corresponds to the fact that its circumcenter lies within its volume.
- It is a measure of the quality of the complex.
- By construction, 0- and 1-simplices are always well-centered.
- This property is important to compute the covolumes of the faces of the simplices.
__init__(simplices, chain_complex)
Instanciates a k-Module
Source code in src/dxtr/complexes/module.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | |
closest_simplex_to(target, index_only=False)
Gets the k-simplex closest to a given position.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target
|
Iterable
|
The desired position. |
required |
index_only
|
bool
|
Optional (default is False) If True, only the index of the simplex within the provided Module is returned otherwise, the Simplex instance is returned. |
False
|
Returns:
| Type | Description |
|---|---|
The seeked Simplex or its index.
|
|
Source code in src/dxtr/complexes/module.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | |
set(property_name, values)
Sets the values of the simplex geometrical properties.
Notes
- Property_name should either be
vertices,volumes,covolumes,circumcenters,deficit angles,dihedral anglesor 'well-centeredness'.
Source code in src/dxtr/complexes/module.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | |