Skip to content

example_complexes

cube(manifold=False, scale=1.0)

Instantiates a cubic 2D-SimplicialComplex or 2D-SimplicialManifold.

Parameters:

Name Type Description Default
manifold bool

If True instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.

False
scale float

A scaling factor to change the size of the structure. Default is 1.

1.0

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The instantiated cubic simplicial complex or manifold.

Source code in src/dxtr/complexes/example_complexes.py
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
@mutelogging
def cube(manifold: bool = False, scale: float = 1.
         ) -> SimplicialComplex | SimplicialManifold:
    """Instantiates a cubic 2D-`SimplicialComplex` or 2D-`SimplicialManifold`.

    Parameters
    ----------
    manifold : bool, optional
        If True instantiates a `SimplicialManifold`, otherwise a `SimplicialComplex`. Default is False.
    scale : float, optional
        A scaling factor to change the size of the structure. Default is 1.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The instantiated cubic simplicial complex or manifold.
    """
    indices = [[0, 1, 2], [1, 2, 3], [0, 1, 4], [1, 4, 5],
               [1, 3, 5], [3, 5, 7], [3, 2, 7], [2, 7, 6],
               [2, 0, 6], [0, 4, 6], [4, 5, 6], [5, 6, 7]]

    positions = np.array([[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1], 
                          [0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]], 
                          dtype=float)
    positions *= scale

    if manifold:
        return SimplicialManifold(indices, positions)
    else:
        return SimplicialComplex(indices, positions)

diamond(manifold=False, scale=1.0)

Generates a structure composed of two superimposed tetrahedra.

Parameters:

Name Type Description Default
manifold bool

If True instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.

False
scale float

The radius of the circumcentric sphere containing the diamond. Default is 1.

1.0

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The generated diamond simplicial complex or manifold.

Notes
  • This is the only example of a SimplicialComplex of topological dimension 3.
Source code in src/dxtr/complexes/example_complexes.py
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
@mutelogging
def diamond(manifold: bool = False, 
            scale: float = 1.) -> SimplicialComplex | SimplicialManifold:
    """Generates a structure composed of two superimposed tetrahedra.

    Parameters
    ----------
    manifold : bool, optional
        If True instantiates a `SimplicialManifold`, otherwise a `SimplicialComplex`. Default is False.
    scale : float, optional
        The radius of the circumcentric sphere containing the diamond. Default is 1.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The generated diamond simplicial complex or manifold.

    Notes
    -----
    * This is the only example of a `SimplicialComplex` of topological 
      dimension 3.
    """
    indices = [[0,1,2,3], [1,2,3,4]]

    theta = 2*np.pi/3

    positions = np.array([[0, 0,-1],
                          [1, 0, 0],
                          [np.cos(theta), np.sin(theta),0],
                          [np.cos(2*theta), np.sin(2*theta),0],
                          [0, 0, 1]])
    positions *= scale

    if manifold:
        return SimplicialManifold(indices, positions)
    else:
        return SimplicialComplex(indices, positions)

disk(size='small', manifold=False)

Instantiates a circular SimplicialComplex or SimplicialManifold.

Parameters:

Name Type Description Default
size str

Specifies the resolution of the structure. Should either be 'small', 'large' or 'massive'. Default is 'small'.

'small'
manifold bool

Instantiates a SimplicialManifold if True. Default is False.

False

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The instantiated circular simplicial complex or manifold.

Notes
  • These complexes are generated from .ply files stored in the data/meshes/ folder.
  • The various disk respectively contains vertices/edges/triangles:
  • small: (1670, 4881, 3212)
  • large: (19991, 59967, 39978)
  • massive: (41676, 125022, 83348)
  • The radius of the generated structures is always 1.
Source code in src/dxtr/complexes/example_complexes.py
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def disk(size: str = 'small', manifold: bool = False
         ) -> SimplicialComplex | SimplicialManifold:
    """Instantiates a circular `SimplicialComplex` or `SimplicialManifold`.

    Parameters
    ----------
    size : str, optional
        Specifies the resolution of the structure. Should either be 'small', 'large' or 'massive'. Default is 'small'.
    manifold : bool, optional
        Instantiates a SimplicialManifold if True. Default is False.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The instantiated circular simplicial complex or manifold.

    Notes
    -----
    * These complexes are generated from `.ply` files stored 
      in the `data/meshes/` folder.
    * The various disk respectively contains vertices/edges/triangles:
       - small: (1670, 4881, 3212)
       - large: (19991, 59967, 39978)
       - massive: (41676, 125022, 83348)
    * The radius of the generated structures is always 1.
    """
    return load_mesh_from_file('disk', size, manifold)

hexagon(manifold=False, radius=1)

Generates a simple hexagonal grid.

Parameters:

Name Type Description Default
manifold bool

If True, instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.

False
radius float

The radius of the hexagon. Default is 1.

1

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The generated hexagonal grid simplicial complex or manifold.

Source code in src/dxtr/complexes/example_complexes.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
@mutelogging
def hexagon(manifold: bool = False, 
            radius: float = 1) -> SimplicialComplex | SimplicialManifold:
    """Generates a simple hexagonal grid.

    Parameters
    ----------
    manifold : bool, optional
        If True, instantiates a `SimplicialManifold`, otherwise a `SimplicialComplex`. Default is False.
    radius : float, optional
        The radius of the hexagon. Default is 1.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The generated hexagonal grid simplicial complex or manifold.
    """
    indices = [[0, 1, 2],
               [0, 2, 3],
               [0, 3, 4],
               [0, 4, 5],
               [0, 5, 6],
               [0, 6, 1]]

    center = np.zeros(3)
    outisde_vertices = radius * np.array([[np.cos(2*np.pi*i/6), 
                                           np.sin(2*np.pi*i/6), 
                                           0] for i in range(6)])

    positions = np.vstack((center, *outisde_vertices))

    if manifold:
        return SimplicialManifold(indices, positions)
    else:
        return SimplicialComplex(indices, positions)

icosahedron(manifold=False, scale=1.0)

Instantiates an icosahedron SimplicialComplex or SimplicialManifold.

Parameters:

Name Type Description Default
manifold bool

If True instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.

False
scale float

A scaling factor to change the size of the structure. Default is 1.

1.0

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The instantiated icosahedron simplicial complex or manifold.

Source code in src/dxtr/complexes/example_complexes.py
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
@mutelogging
def icosahedron(manifold: bool = False, scale: float = 1.
                ) -> SimplicialComplex | SimplicialManifold:
    """Instantiates an icosahedron `SimplicialComplex` or `SimplicialManifold`.

    Parameters
    ----------
    manifold : bool, optional
        If True instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.
    scale : float, optional
        A scaling factor to change the size of the structure. Default is 1.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The instantiated icosahedron simplicial complex or manifold.
    """

    indices = [[0, 1, 2], [0, 2, 3],
               [0, 3, 4], [0, 4, 5],
               [0, 5, 1], # upper dome ends here
               [1, 7, 2],
               [2, 8, 3], [3, 9, 4],
               [4, 10, 5], [5, 6, 1],  # upper belt ends here
               [7, 2, 8], [8, 3, 9],
               [9, 4, 10], [10, 5, 6],
               [6, 1, 7],  # lower belt ends here 
               [6, 7, 11],
               [7, 8, 11], [8, 9, 11],
               [9, 10, 11], [10, 6, 11]]  # lower dome ends here

    gr = (1 + np.sqrt(5)) / 2

    positions = np.array([[-1, gr, 0], [1, gr, 0],
                          [0, 1, -gr], [-gr, 0, -1],
                          [-gr, 0, 1], [0, 1, gr],
                          [gr, 0, 1], [gr, 0, -1],
                          [0, -1, -gr], [-1, -gr, 0],
                          [0, -1, gr], [1, -gr, 0]])
    positions *= scale
    if manifold:
        return SimplicialManifold(indices, positions)
    else:
        return SimplicialComplex(indices, positions)

load_mesh_from_file(mesh_type, mesh_size, manifold)

Instantiates SimplicialComplex or SimplicialManifold from files.

Parameters:

Name Type Description Default
mesh_type str

The name of the type of domain to generate. Should be in ['sphere', 'disk'].

required
mesh_size str

The resolution of the domain to generate. Should be in ['small', 'large', 'massive'].

required
manifold bool

If True, instantiates a SimplicialManifold, otherwise a SimplicialComplex.

required

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The instantiated simplicial complex or manifold.

Source code in src/dxtr/complexes/example_complexes.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
@mutelogging
def load_mesh_from_file(mesh_type: str, 
                        mesh_size: str, 
                        manifold: bool) -> SimplicialComplex | SimplicialManifold:
    """Instantiates `SimplicialComplex` or `SimplicialManifold` from files.

    Parameters
    ----------
    mesh_type : str
        The name of the type of domain to generate. 
        Should be in ['sphere', 'disk'].
    mesh_size : str
        The resolution of the domain to generate.
        Should be in ['small', 'large', 'massive'].
    manifold : bool
        If True, instantiates a `SimplicialManifold`, 
        otherwise a `SimplicialComplex`.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The instantiated simplicial complex or manifold.
    """

    try:
        assert mesh_size in COMPLEX_SIZES, (
            f'{mesh_size} is not a valid {mesh_type} size value.' +
            f' Should either be in {COMPLEX_SIZES}.')

        root = files('dxtr')
        file_name = f'{mesh_type}_{mesh_size}.ply'
        path = root.joinpath('utils/mesh_examples/').joinpath(file_name)

        with as_file(path) as path_file:
            if manifold:
                return SimplicialManifold.from_file(path_file)
            else:
                return SimplicialComplex.from_file(path_file)

    except AssertionError as msg:
        logger.warning(msg)
        return None 

sphere(size='small', manifold=False)

Instantiates a spherical SimplicialComplex or SimplicialManifold.

Parameters:

Name Type Description Default
size str

Specifies the resolution of the structure. Should either be 'small', 'large' or 'massive'. Default is 'small'.

'small'
manifold bool

Instantiates a SimplicialManifold if True. Default is False.

False

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The instantiated spherical simplicial complex or manifold.

Notes
  • These complexes are generated from .ply files stored in the data/meshes/ folder.
  • The various spheres respectively contains vertices/edges/triangles:
  • small: (1712, 5130, 3420)
  • large: (19991, 59967, 39978)
  • massive: (41676, 125022, 83348)
  • The radius of the generated structures is always 1.
Source code in src/dxtr/complexes/example_complexes.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def sphere(size: str = 'small', manifold: bool = False
           ) -> SimplicialComplex | SimplicialManifold:
    """Instantiates a spherical `SimplicialComplex` or `SimplicialManifold`.

    Parameters
    ----------
    size : str, optional
        Specifies the resolution of the structure. Should either be 'small', 'large' or 'massive'. Default is 'small'.
    manifold : bool, optional
        Instantiates a SimplicialManifold if True. Default is False.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The instantiated spherical simplicial complex or manifold.

    Notes
    -----
    * These complexes are generated from `.ply` files stored 
      in the `data/meshes/` folder.
    * The various spheres respectively contains vertices/edges/triangles:
       - small: (1712, 5130, 3420)
       - large: (19991, 59967, 39978)
       - massive: (41676, 125022, 83348)
    * The radius of the generated structures is always 1.
    """
    return load_mesh_from_file('sphere', size, manifold)

tetrahedron(manifold=False, scale=1.0)

Generates a regular tetrahedra within the unit sphere.

Parameters:

Name Type Description Default
manifold bool

If True instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.

False
scale float

The radius of the circumcentric sphere containing the diamond. Default is 1.

1.0

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The generated tetrahedron simplicial complex or manifold.

Notes
  • The upper vertices is at point (0,0,scale)
  • The lower face is parallel to the xy-plane.
Source code in src/dxtr/complexes/example_complexes.py
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@mutelogging
def tetrahedron(manifold: bool = False, 
                scale: float = 1.) -> SimplicialComplex | SimplicialManifold:
    """Generates a regular tetrahedra within the unit sphere.

    Parameters
    ----------
    manifold : bool, optional
        If True instantiates a `SimplicialManifold`, otherwise a `SimplicialComplex`. Default is False.
    scale : float, optional
        The radius of the circumcentric sphere containing the diamond. Default is 1.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The generated tetrahedron simplicial complex or manifold.

    Notes
    -----
    * The upper vertices is at point (0,0,scale)
    * The lower face is parallel to the xy-plane.
    """

    indices = [[0,1,2,3]]

    positions = np.array([[ np.sqrt(8/9),             0, -1/3],
                          [-np.sqrt(2/9),  np.sqrt(2/3), -1/3],
                          [-np.sqrt(2/9), -np.sqrt(2/3), -1/3],
                          [            0,             0,    1]])
    positions *= scale

    if manifold:
        return SimplicialManifold(indices, positions)
    else:
        return SimplicialComplex(indices, positions)

triangle(manifold=False, scale=1.0)

Generates a simple triangle.

Parameters:

Name Type Description Default
manifold bool

If True instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.

False
scale float

The length of the edges. Default is 1.

1.0

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The generated triangle simplicial complex or manifold.

Source code in src/dxtr/complexes/example_complexes.py
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
@mutelogging
def triangle(manifold: bool = False, 
             scale: float = 1.) -> SimplicialComplex | SimplicialManifold:
    """Generates a simple triangle.

    Parameters
    ----------
    manifold : bool, optional
        If True instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.
    scale : float, optional
        The length of the edges. Default is 1.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The generated triangle simplicial complex or manifold.
    """
    c = np.cos(np.pi/3)
    s = np.sin(np.pi/3)

    indices = [(0, 1, 2)]
    positions = scale * np.array([[0,0,0], [1,0,0], [c,s,0]])

    if manifold:
        return SimplicialManifold(indices, positions)
    else:
        return SimplicialComplex(indices, positions)

triangular_grid(edge_number_per_side=3, edge_length=1, manifold=False)

Generates a triangle grid SimplicialComplex or SimplicialManifold.

Parameters:

Name Type Description Default
edge_number_per_side int

The number of 1-simplices on each side. Default is 3.

3
edge_length float

The total length of one side of the domain. Default is 1.

1
manifold bool

If True, instantiates a SimplicialManifold, otherwise a SimplicialComplex. Default is False.

False

Returns:

Type Description
SimplicialComplex or SimplicialManifold

The generated triangle grid simplicial complex or manifold.

Source code in src/dxtr/complexes/example_complexes.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
@mutelogging
def triangular_grid(edge_number_per_side: int = 3,
                    edge_length: float = 1, 
                    manifold: bool = False
                    ) -> SimplicialComplex | SimplicialManifold:
    """Generates a triangle grid `SimplicialComplex` or `SimplicialManifold`.

    Parameters
    ----------
    edge_number_per_side : int, optional
        The number of 1-simplices on each side. Default is 3.
    edge_length : float, optional
        The total length of one side of the domain. Default is 1.
    manifold : bool, optional
        If True, instantiates a `SimplicialManifold`, otherwise a `SimplicialComplex`. Default is False.

    Returns
    -------
    SimplicialComplex or SimplicialManifold
        The generated triangle grid simplicial complex or manifold.
    """

    N = edge_number_per_side
    dL = edge_length

    total_nbr_vtx = (N+1)**2

    indices = np.arange(total_nbr_vtx).reshape((N+1, N+1))[::-1]

    triangles = []
    for upper_row, lower_row in zip(indices[:-1], indices[1:]):
        for i, j, k, l  in zip(upper_row[:-1], upper_row[1:], 
                               lower_row[:-1], lower_row[1:]):
            triangles.append([i, j, l])
            triangles.append([i, k, l])

    triangles = np.array(triangles)
    theta = np.pi/3
    positions = np.array([[i*dL + j*np.cos(theta)*dL, j*dL*np.sin(theta), 0] 
                           for j in np.arange(N+1) for i in np.arange(N+1)])

    if manifold:
        return SimplicialManifold(triangles, positions)
    else:
        return SimplicialComplex(triangles, positions)